Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection

نویسندگان

  • Jin-Seo Noh
  • Jun Min Lee
  • Wooyoung Lee
چکیده

Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the characteristic properties, issues, and their possible solutions of hydrogen sensors based on the low-dimensional Pd nanostructures with more emphasis on Pd thin films and Pd nanowires. The finite size effects, relative strengths and weaknesses of the respective Pd nanostructures are discussed in terms of performance, manufacturability, and practical applicability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room Temperature Hydrogen Sensor Based on Single-Electron Tunneling Between Palladium Nanoparticles

In this paper, we present the results of single-electron tunneling in two-dimensional (2D) hexagonal closed packed arrays of palladium nanoparticles. After inspecting the emergence of Coulomb blockade phenomena, we demonstrate the possibilities of using these arrays as a single-electron tunneling based hydrogen sensor. We assumed arrays of palladium nanoparticles with diameters of 3.5 and 6...

متن کامل

Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin  layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...

متن کامل

Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications

One of the main challenges in optical hydrogen sensing is the stability of the sensor material. We found and studied an optimized material combination for fast and reliable optical palladium-based hydrogen sensing devices. It consists of a palladium-nickel alloy that is buffered by calcium fluoride and capped with a very thin layer of platinum. Our system shows response times below 10 s and alm...

متن کامل

Hydrogen gas sensing properties of PdO thin films with nano-sized cracks.

We report on a novel method for the fabrication of highly sensitive hydrogen gas sensors based on palladium oxide thin films and have investigated their hydrogen sensing properties and nanostructures. To our knowledge, this is the first report on the use of palladium oxide and reduced palladium thin films as hydrogen sensors. The palladium oxide thin films were deposited on thermally oxidized S...

متن کامل

Nanostructured Palladium-Doped Silica Membrane Layer Synthesis for Hydrogen Separation: Effect of Activated Sublayers

Palladium doped silica membranes were synthesized by the sol-gel method using two different procedures. The first palladium-doped silica membrane (M1) was synthesized with a coating of four layers of silica-palladium sol. The second membrane (M2) was synthesized with a coating of two silica layers followed by a coating of two silica-palladium layers. Scanning electron microscopy (SEM) proved th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011